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A little about me
Hi! My name is Dharmik Patel. 

I’m from Ahmedabad, India. 

I recently got my Hons. BSc at the 
University of Toronto, in Mathematics 
and Physics.  

My research interests are in theoretical 
quantum optics/photonics and 
applications to quantum information. I’m 
also interested in questions about 
mathematical foundations and 
interpretation.
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Outline

Proving 
ÛN(t) = eiγ(t) ̂S(z)D̂(α)R̂(Φ)

Modelling lossy generation 
of squeezed light via an 

effective  processχ(2)

1 2Previous Work

Current work 3

Threshold detection statistics with Gaussian states

[Phys. Rev. A 41, 4625 (1990).] 
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Previous Work
August 2023 - April 2024

4



Undergraduate Thesis

A unique representation for the unitary time evolution operator of an  

-mode quadratic HamiltonianN

Proving  for a 
quadratic Hamiltonian
ÛN(t) = eiγ(t) ̂S(z)D̂(α)R̂(Φ) Modelling lossy generation of squeezed 

light via an effective  processχ(2)

1 2

[Phys. Rev. A 41, 4625 (1990).] 
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1

Proving  for a 
quadratic Hamiltonian

ÛN(t) = eiγ(t) ̂S(z)D̂(α)R̂(Φ)
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Quadratic 
Hamiltonians…

1

 HermitianN × N

 SymmetricN × N

 row1 × N

-valuedℝ

Unitary evolution formulation 
of the Schrödinger Equation

ÛN(t) =
n

∏
i=1

exp (ci(t)Ĥi)

1.1

J. Math. Phys. 4, 575–581 (1963)

7



… and their time 
evolution operators

Global phase 
factor

Squeezing

ÛN(t) = exp (iγN(t)) ̂S(z)D̂(α)R̂(Φ)

Displacement

Rotation

1
1.2

[Phys. Rev. A 41, 4625 (1990).] 
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Disentangling operator 
products

Step 1  

Disentangling individual 
operators via BCH (Glauber)

1
1.3

Step 2 

Normal ordering via 
commutation

Step 3 

Obtain the disentangled 
operator product

Lie algebraic background underpinning this:

Infinite-dimensional Lie algebra   ℒ &

 defines unique disentangled form of  and  lets us factorise  !ℒ ̂SN(z) ψ eA†(z)−A(z)

Homomorphism ψ : ℒ → su(1,1)
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Put into Schrödinger equation, use chain rule, match coefficients on LHS/RHS

Matrix Riccati Equation 
implies uniqueness of ÛN

You can obtain the original 
squeezing, displacement, and 
rotation parameters  
by solving for A, B, C, D, E, 
and F.

z, α, Φ

1.41
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2

Modelling lossy generation of squeezed 
light via an effective  processχ(2)
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2

We want to be able to solve for the dynamics without solving systems of 6 PDEs!

Quadratic Hamiltonian governing a coupled channel waveguide - ring resonator system:

ĤN(t) = ℏ∑
k,l

Δkl(t)a†
k al + ℏ∑

k,l

ζkl(t)a†
k a†

l + H.c.

Linear coefficient functions

Nonlinear coefficient functions

Operators for the 
squeezed light signal (S)

2.1

SiN

Two pumps P and C treated classically.

C is CW, P is pulsed.

Effective  between P and Sχ(2)

[Phys. Rev. A 110, 033709 (2024)]
[Phys. Rev. Lett. 122, 153906 (2019)]

[Phys. Rev. Applied 12, 064024 (2019)]
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We work in the undepleted pump approximation, which reduces higher-order Hamiltonians to quadratic ones. It is 
a valid approximation in most cases since a negligible fraction of the pump power is transferred to the generated fields. 

  

2

We use the asymptotic in/out field 
formalism (from scattering theory). It’s 
a natural basis to treat general nonlinear 
optics problems. 

[Phys. Rev. A 85 013833 (2012).]

2.2
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2

We assume zero displacement for the squeezed state, so  where  is 
determined by the squeezing matrix  and  by rotation matrix .

Û(t) = ̂S(t)R̂(t)eiθ(t) ̂S
J R̂ ϕ

2.3

Instead of solving for 6 parameter functions in a PDE system, we determine the 
elements of  and  by setting up dynamical equations satisfied by auxiliary matrices 

 and :
J ϕ

V W

d
dt [ a

a†] = − i [ Δ 2ζ
−2ζ* −Δ*] [ a

a†]
Heisenberg equations for  and a a†

[ a
a†] = [ V W

W* V*] [
a(t0)
a†(t0)]

Solution to Heisenberg 
equations

d
dt

V = − iΔV − 2iζW*

d
dt

W = − iΔW − 2iζV*

Reduction to coupled 
ODEs

WVT − VWT = 0
VV† − WW† = 1

ODE constraints

 [Adv. Opt. Photon. 14, 291-403 (2022)]

[Phys. Rev. A 110, 033709 (2024)]

Solved by RK4
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2

We’re considering lossy generation — loss can be modelled by adding a phantom channel.

2.4

Figure from [Adv. Opt. Photon. 14, 291-403 (2022)]

The phantom channel is 
point-coupled to the ring.
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2 2.5

Two key statistics were examined:  

The total number of squeezed photons generated ( ) & the Schmidt 
number ( )

nph
K

 quantifies the number of 
Schmidt modes in the 

squeezed state.

K

K =
(∑λ sinh2(rλ))

2

∑λ sinh4(rλ)
[AVS Quantum 
Sci. 5, 011404 
(2023)] 

 = 1.0 means the state has only 
a single Schmidt mode, so it is 

separable. Separability decreases 
with increasing .                                   

K

K

The Schmidt decomposition 
allows a multimode squeezed 

state to be written as a product 
of single-mode squeezed states, 

in each Schmidt mode.
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Optimising for nph

Very short  means that the 
bandwidth of the pulse greatly 
exceeds the ring resonance width, so 
only a small fraction of the pulse 
enters the resonator.

τP

2

The largest  generated was about 

27.9, for pump energy  about 2.0 
pJ and pulse duration  about 2.93 
ns. CW pump power is 30 mW. The 
ring is critically coupled. This is 
about 20 dB of squeezing.

nph

UP

τP

2.6
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Going to Schmidt number 1.0 — returning optimal  and  τP UP

Plotting contour lines and examining the isoclines, we see that  and  yielding a Schmidt number around 1.0 are around 
1.0 ns and 2.0 pJ respectively. When the ring resonance and the pulse bandwidth are approximately equal, we get this 

optimal Schmidt number.

τP UP

2 2.7
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Current Work
April 2024 -

3
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Analysing linear optics circuits with threshold detectors and 
Gaussian states

System of interest

We’re interested in 
examining detection 
statistics in systems such 
as this. 

Potential applications to 
Gaussian boson 
sampling, heralded HOM 
using squeezed states, 
etc.

3 3.1

[Phys. Rev. A 98, 062322]
20



Gaussian states and the symplectic formalism
Gaussian states  are special; can be completely characterised by vectors 
of means  and Husimi covariance matrices . [Phys. Rev. A 106, 043712]. 

ρ( ⃗α , Σ)
⃗α Σ

 modes of interest,  

 

 

 

l
̂ ⃗ζ = [ ̂a1, …, ̂al, ̂a†

1, …, ̂a†
l ]

⃗α i = Tr (ρ ̂ ⃗ζi)
[Σ]ij =

1
2

tr ({ ̂ ⃗ζi
̂ ⃗ζ†
j } ρ) − ⃗α i ⃗α *j +

1
2

δij

For a squeezed vacuum state, mean displacement is 0.  

0

3 3.2

Gaussian states have Gaussian characteristic functions.
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So that’s how to describe Gaussian states. What about the 
system’s detectors?

We are using threshold detectors as opposed to photon-number resolving (PNR) detectors.

PNRs need a minimum number of photons to click; one is 
enough for a threshold detector.

Threshold detection measurements 
distinguish between a vacuum and 
a photon.  

Standard in integrated photonic 
devices, widely available. 

For classical algorithms, PNRs 
would make it very, very hard 
to efficiently compute statistics.

3 3.3 [Phys. Rev. A 98, 062322]
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Threshold statistics with Gaussian states
Deriving a closed-form expression for the probability

3 3.4

With POVM elements  (output channel , 
frequency bin ) corresponding to click/no click 
respectively, we can write the projector for a desired 
measurement: 

̂PnB, ÔnB n
B ∈ {S, I}

Π̂V = ∏
n∈{1,…,l}

̂PnBÔn′ B′ 

The probability that this projector is measured is given 
by

pV = tr (Π̂V |Ψ⟩⟨Ψ |) The threshold POVM elements can be 
combined for each mode to write a 

projector for any measurement desired.There are two methods to simplify this: one is [[Phys. 
Rev. A 98, 062322]] which uses the Husimi Q-function 
and the other uses disentangling methods.
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Example: HOM with indistinguishable squeezed states

3 3.5

System of interest

Using the asymptotic in/out field 
formalism, we can study realistic input 
Gaussian states in systems such as this 
— even beyond the 2-photon regime for 

general Gaussian input states.

In this example, we have a 50/50 beam 
splitter described by a unitary 

transformation . U
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Example: HOM with indistinguishable squeezed states

3 3.6

Calculating coincidence click probability 
with respect to squeezing parameter  
(identical in both input modes), we have the 
plot on the right:

r

Low gain 
regime; 

Traditional 
HOM!

High gain 
regime 

Two input photons 
from each ring that 

are indistinguishable.

Many pairs produced, 
so multiple photons 
produced going into 

output channels.

HOM effect 
washed out
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Example: HOM with indistinguishable squeezed states

3 3.7

Our disentangling method agrees 
with the method of [Quesada 
2018]! 

We are no longer computing  
determinants, so complexity is 
no longer .  

We expect an exponential 
decrease in complexity when we 
go from mode-wise to frequency 
bin-wise detectors. Edit: NO we 
don’t 

2N

O (N32N)

(This is very much still a work 
in progress.)26
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Future work

3.8

So, we have the theory that lets us analyse these systems with arbitrary linear optics 
circuits and threshold detectors sensitive to frequency bins. We now want to apply it to 
study more complex multimode systems.  

An interesting avenue we’d like to explore is extending my thesis work to studying non-
Gaussian states generated in a nonlinear fashion, outside of the undepleted pump 
approximation. [Phys. Rev. A 110, 033709 (2024)]  

We are also looking for more potential applications of this theory.
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Thank you to Prof. Sipe and Dr. Vendromin for their excellent supervision! I have learned so 
much from them and hope to learn much more.  

Thank you to Prof. Heshami for giving me the opportunity to talk to you about my work! 
Thank you for attending!
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Threshold detection probabilities

An -mode Gaussian state measured,  clicks observed in modes .l N S = (i1, i2, …, iN)

Tor(A) = ∑
Z∈P([N])

(−1)|Z|

det (𝕀 − A(Z))

The Torontonian

[Quesada] showed the probability can be written 
using the Torontonian: 

 

For any matrix of the form 

  where  is 

Hermitian and  is symmetric, we can compute its 
Torontonian.  

Direct relation to the Hafnian for PNRs! [Quesada, 
Arrazola, Killoran (2018)].

p(S) =
1

det Σ
Tor (𝕀 − (Σ−1)(S))

A ∈ ℂ2N×2N, A = [W Y*
Y W*] > 0 W

Y

For direct computations of the Torontonian, the complexity is 
.O (N32N)
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3 3.4


